Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair.
نویسندگان
چکیده
The ubiquitin-proteasome pathway is fundamental to synchronized continuation of many cellular processes, for example, cell-cycle progression, stress response, and cell differentiation. Recent studies have shown that the ubiquitin-proteasome pathway functions in the regulation of nucleotide excision repair (NER) in yeast. In order to investigate the role of the ubiquitin-proteasome pathway in the NER of mammalian cells, global genomic repair (GGR), and transcription-coupled repair (TCR) were examined in a mouse ts20 cell line that harbors a temperature-sensitive ubiquitin-activating enzyme (E1). We found that E1 inactivation-induced ubiquitination deficiency decreased both GGR and TCR, indicating that the ubiquitination system is involved in the optimization of entire NER machinery in mammalian cells. We specifically inhibited the function of 19S proteasome subunit by overexpressing 19S regulatory complex hSug1 or its mutant protein hSug1mk in repair competent human fibroblast, OSU-2, cells and compared their capacity for NER. The results showed that 19S regulatory complex positively modulates NER in cells. In addition, we treated OSU-2 cells with the inhibitors of 20S subunit function, MG132 and lactacystin, and demonstrated that the catalytic activity of 20S subunit is also required for efficient NER. Moreover, the UV-induced recruitment of repair factor xeroderma pigmentosum protein C (XPC) to damage sites was negatively affected by treatment of repair competent cells with MG132. Taken together, we conclude that the ubiquitin-proteasome pathway has a positive regulatory role for optimal NER capacity in mammalian cells and appears to act through facilitating the recruitment of repair factors to DNA damage sites.
منابع مشابه
Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein
In mammalian nucleotide excision repair, the DDB1-DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1-DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitinati...
متن کاملInsulin Receptor Tyrosine Kinase Substrate Enhances Low Levels of MDM2-Mediated p53 Ubiquitination
The tumor suppressor p53 controls multiple cellular functions including DNA repair, cell cycle arrest and apoptosis. MDM2-mediated p53 ubiquitination affects both degradation and cytoplasmic localization of p53. Several cofactors are known to modulate MDM2-mediated p53 ubiquitination and proteasomal degradation. Here we show that IRTKS, a novel IRSp53-like protein inhibited p53-induced apoptosi...
متن کاملValosin-containing Protein (VCP)/p97 Segregase Mediates Proteolytic Processing of Cockayne Syndrome Group B (CSB) in Damaged Chromatin.
Cockayne syndrome group A and B (CSB) proteins act in transcription-coupled repair, a subpathway of nucleotide excision repair. Here we demonstrate that valosin-containing protein (VCP)/p97 segregase functions in ultraviolet radiation (UVR)-induced ubiquitin-mediated CSB degradation. We show that VCP/p97 inhibition and siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 impair C...
متن کاملImpaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme.
Global nucleotide excision repair is greatly attenuated in terminally differentiated mammalian cells. We observed this phenomenon in human neurons and in macrophages, noting that the transcription-coupled repair pathway remains functional and that there is no significant reduction in levels of excision repair enzymes. We have discovered that ubiquitin-activating enzyme E1 complements the repair...
متن کاملUV induced ubiquitination of the yeast Rad4–Rad23 complex promotes survival by regulating cellular dNTP pools
Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4-Rad2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular carcinogenesis
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2005